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Microscopic derivation of time-dependent density functional methods
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Time-dependent density functional methgd@®DFM) are studied from the microscopic viewpoint using
projection operator methods in classical liquids. A density field is defined without averaging, so that a time
evolution equation of the density field is derived with a random force. The derived equation includes a free
energy functional, which is different from that defined in the TDDFM. The projection operator method pro-
vides the exact expression of the free energy functional. Another definition of the density field by an average
leads to the equation of the TDDFM. In addition, an equation describing fluctuations is also derived.
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[. INTRODUCTION relation in a nonequilibrium fluid is the same as that in an
) ] . equilibrium fluid with the corresponding desnity field. This is
The time-dependent density functional meti@®DFM)  the local equilibrium assumption. The physical interpretation
is successful in studies on dynamical properties of classicaf the assumption is, however, not clear.
liquids [1-13]. The method was early applied to solvation  On the other hand, one obtains the free energy functional
dynamics[1-3]. The solvation dynamics in mixtures, in par- with different definitions from that of the DFT, if the nonlin-
ticular, has shown agreement between the TDDFM ancar Langevin equation theory is applied to atomic fluids
molecular dynamics simulation§4,10]. In addition, the [21,23,24. The nonlinear Langevin equation theory provides
TDDFM has reproduced values of viscosity obtained by mo-similar equations to the TDDFM, which describe the time
lecular dynamics simulatior{$]. It can also provide the dy- evolution of a density field. In addition, the equations include
namic structure factof5] and self-diffusion constan6]. the “free energy functional,” though its definition is different
Some authors have extended the method to supercooled li§fom that in the DFT. From the difference of the definition,
uids [8,9] and molecular liquid§11-13. one finds that the equations are different from that of the
In addition, recently, the TDDFM has been applied to TDDFM. ,
Brownian fluids such as colloidal systeni$4—20. The One can expect that the Kawasaki-Gunton operator
TDDFM for the system was compared with numerical simu-Method[25-27 provides the same free energy functional as

lations of Brownian dynamics. Marconi and Tarazona havénat of the DFT. The Kawasaki-Gunton operator was origi-

shown excellent agreement in a two-dimensional rod systerﬁaIIy introduced by Kawasaki and Gunton to study the non-
inear shear viscosity25]. Some authors have employed it to

e s o e e o oV NSpon eqatons exaclf 21 The Kawasak:
9 9 unton operator method is formulated using the relevant dis-

[17]. h K ledae has derived th tribution obtained by the generalization of the Gibbs en-
No-one, owever, to our knowledge has derived t esemble[27]. On the other hand, in the nonlinear Langevin
TDDFM from the Liouville equation using a microscopic

L . . equation theory, one employs a distribution includifyinc-
Hamiltonian[10,21]. Some authors have discussed the de”'tions, which is similar to that of the microcanonical en-

vation in Brownian f_Iuids[14,_18—20. These (_jiscussi(_)ns semble. Thus, Kawasaki has called the two operator methods

st_arted from Langevm equations of _mtgra_ctmg Io"’m'des‘canonicaI and microcanonical descriptid@8]. One can ex-

Since the TD.DFM IS _succesfu_l for ato.m|cll|qU|ds, one.should ect that the canonical description leads to the free energy

study the microscopic base in Hamiltonian mechanics. Th nctional of the DET.

giﬁerence 'bet'weenb the Hamiltoniarll sygtem and Brownian Discussions also arise as to random force in the TDDFM

ynamics Is given by momentum relaxation. with the microscopic derivation. Some authors have em-
When the TDDFM is derived, the derived equation should loyed the TDDFI& with a random force to study super-

ooled liquids and glas§8,9]. One can obtain a random

have the same free energy functional as that in the densi
functional theory(DFT) [10,22. In the basic equation of the force by nonlinear Langevin equation thed3,24. Mar-
coni and Tarazongd 14,19, however, have derived the

TDDFM, the functional derivative of the free energy pro-
TDDFM without a random force. They insisted that the

vides the time evolution of a density field. Then, the free
energy functional is defined by the DFT. This is because the]'DDFM should not have a random force. In the Brownian
fluid system, Archer and Rauscher have shown that the prob-

TDDFM is the dynamical extension of the DFT.
Some authors have derived the DFT free energy funcrem depends on the definition of the density fi2d].
An additional problem is caused by the explicit expres-

tional in the TDDFM for Brownian fluids, using an assump-
tion [14,18-2Q. The assumption is that the two-particle cor- sions of the free energy functional defined in the nonlinear
Langevin equation theory. The definition is different from

that in the density functional theory and the TDDFM. Fru-
*Electronic address: yosi3scp@mbox.nc.kyushu-u.ac.jp sawa and Hayakaw28] have obtained the explicit expres-
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shown that the method causes difficulties for hard-sphere lig- = | dUGLR(r,t=t);p(r,t')+R(r,1), (3

sion on a discrete lattice. Woo and Sdi2§], however, have ap(r,t) ft
at

uids. Thus, explicit expressions valid for all interactions be- 0
tween liquid particles have not yet been obtained. where
The purpose of the present study is to derive the TDDFM
from the Liouville equation for atomic liquids using projec- R(r,t) = €QLQiLp(r,0). (4)
tion operators. In addition, the relation of the free energy
functional to the derivation is established. Projection operaHere,iL is the Liouville operator an@=1-P.
tor methods provide a systematic derivation and clear inter- The Markovian approximation leads one to the nonlinear
pretation of the approximation. First, the time evolution of aLangevin equation. The present Markovian approximation is
density field is studied without coarse graining using thegiven by[24]
nonlinear Langevin equation theory. Next, the TDDFM is
derived using the Kawasaki-Gunton operators. (LR(r,t=t");p(r,t")) = (iLR(r,0); p(r,t')) 76t - t').
In the present study, the nonlinear Langevin equation (5)
theory is also studied to compare it with the Kawasaki-
Gunton operator method. The nonlinear Langevin equatioThe substitution of Eq(5) into Eq. (3) yields
theory leads to a random force. Thus, by using the nonlinear

Langevin equation theory, one can establish the role of a ap(r,t) 7, _ ,
random force in the derivation of the TDDFM. In addition, a §<|LR(r,O),p(r,t N+R(.Y. 6)
the theory provides the free energy functional discussed by ) ) o ) _
Frusawa and Hayakaw@8] and Woo and Song29]. For The nonlinear Langevin equation is rewritten in a form
these reasons, the nonlinear Langevin equation theory will bicluding the free energy functional. The first term in the
discussed in the next section. right hand side of Eq(6) reduces to
: _ , , 0 BF[p(r,1)])
Il. THE NONLINEAR LANGEVIN EQUATION THEORY <"—R(r10)’P(fvt)>=f oM ey
In the present section, a density field is defined without L OM(r,r't)
coarse graining. The time evolution equation of a density + [ dr Sp(t' 1) (7)

field p(r,t) depends on its definitiof20]. If one has
where M(r,r’,t)=([iLp(r)][iLp(r")]; p(r ,t)). The free en-

i N ergy functional
p(r,t) = E a(r =ri(1), (1) )
=t = BF'[p(r)] = In(&(p(r) = p(r))) (8)
the first definition is given by(r ,t)=p(r ,t). Here,r;(t) is is different from that of the DFT in its definition. This is the
the position of particle. one discussed by Frusawa and Hayak&2& and Woo and

The nonlinear Langevin equation thed81,30,31 is ap-  Song[29]. Since
plied to the first definitionp(r ,t)=p(r,t). In the nonlinear
Langevin equation theory, slow variables play an essential M= V .[kBTP(r’t)V’(S(r _ r’)], 9
role. The time changes of the slow variables are projected on m
the nonlinear functional space of the variables. The projec-
tion provides closed equations for the variables when th&vherem is the mass of the particle, one can find that the
memory functions are obtained. If time changes of the chosecond term in Eq(7) vanishes and then
sen variables are slow enough, one can employ the Markov-

ian approximation. The present slow variablebis,t). GLR(F,0): p(r 1) = V - [kBTP(rut) v 5BF'[P(F.U]]
To apply the nonlinear Langevin equation theory, the pro- B m 3p(r,t)
jection operator is defined by (10)
o B <5<5(;3(r) — (1, D)) The substitution of Eq(10) into Eq. (6) yields
X oo oy P 55
PR M:DV-[p(r,t)VM}+R(r,t),
R ot Sp(r,t)
Here, X is a function of the phase space witkO, p(r) (11)
=p(r,0), and (---8(p(r)-p(r,t))) denotes the average re-
stricted top(r)=p(r,t) over the phase space withO. whereD=kgT7/(2m).

The usual procedure of the projection operator method On the other hand, one can obtain a different expression
[32] provides a generalized nonlinear Langevin equationfor the nonlinear Langevin equation. Calculating the first
The equation is given by term in the right hand side of E@6) directly, one has
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N N ~
. . A A X
iLR(r,00=-V -[EviV V(=) + 2 V8= |, PX = (X), + derp(r,O). (16)
i=1 i=1 Xp(r)i
(120 The expression in brackefs ‘), is given by
wherev; is the velocity of particld. In addition,v;=iLv; is N
given by the equation of motiomv;=-%,..,Viu(r;,r;) when (Xexp[—,Bf dr p(r)ydr)])
one considers only a two-particle interactiofr;,r;). Aver- (k)lt = ' (17)
aging Eq.(12), one can obtain <9XF{—ﬁf dr H(OHO)])

(iLR(r,0); p(r,1))
where the virtual external fielg{(r) is determined by

(P(r)ie = (p(r)):- (18

, ) ) Here, (---); is the average using a nonequilibrium distribu-
X | dr'v(r,r)p(r’,t)+p(r,t) Vo(r,r)|. (13 tion, and

1
__EV {—kBTVp(r,t)‘P(r,t)V

Then one has (p(r))={p(r,t)o. (19
, KaT In addition,
= v &%) )
|22
| i, on, o

+ L -{p(r,t)Vfdr’v(r,r’)p(r’,t)} Hp(r )
2m and 8p(r,t")=p(r ,t")=(p(r")):. The second projection op-
erator depends on time in contrast to the first projection op-

erator given by Eq(2).
The second projection operator provides a exact equation

which is equivalent to the equation derived by Dé&8] and  for p(r,t). The time development G(r ,t) is given by
Frusawa and Hayakaw&4] for the Langevin process.

The two expressions provide an exact form of the first dp(r,t) :
free energy functionaF’[p(r)]. Comparing Egs(10) and a
(13), one has

—ﬁv Tp(r,H) Vo(r,n)]+R(,0), (14)

t
dt'e" P iLQ, U(t’, DL p(r)
0

t
+ f dt'e Q. U’ DILA(r) + QuU(0,DIL (1),
0

BF'[p(f)]=fp(r)ln p(r)dr
(20)

+§fdrfdr’v(r,r’)p(r)p(r’) whereQ,=1-P,, U(t,t") is defined by

a ! —_ ! 1
—Bf dr v(r,r)p(r)+Afp(r)dr +B, oD =U.niLQ, (21)

(15) with U(t,t)=1, and R(t’,t;r)=Q,U(t’,t)iLp(r). Equation

L L (20) is rewritten in the form
because-'[p] is independent of if p is independent of.

This agrees with the result derived by Frusawa and Hay- ap(r,t t
: Y - 2l ):f dt'{(iLR(t',t;r»w

akawa[28]. In contrast to their derivation, it is valid for all ot o

interactions because no discrete lattices are employed in the

present derivation. Equatiofil5), however, has arbitrary ﬁ(iLR(t’,t;r)),t, ,

constantsA andB. ta (.0, p(r,t)

1] t/
t
Il. THE KAWASAKI AND GUNTON PROJECTION il Sy A .
OPERATOR + Jo dt’e QU t)iLp(r) + R(O,t;r).
The second projection operator is introduced because the (22

first projection operator does not provide the TDDFM. The ) . .
second projection operator has been developed by Kawasaki® first term on the right hand side of E@2) reduces to

and Guntorj25,26. The projection operator is applied to the
second definitiorp(r ,t)=(p(r)), where the average is given (LR, t;1))er :J dr’M(t,t";r,r")Bydr), (23
by a nonequilibrium distribution.

The second projection operator is defined[B§,26] whereM(t,t’;r,r")=(R{t’,t";r)R(’,t;r")), and[10]
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SF[p(r.t)]

Sp(r',t)
The second free energy functiong[p(r)] is exactly the
same as that in the DFT. CalculatiQy, one has

~ t
M:f dt’UdrfM(t,t’:r'f’)ﬂl/f(”
ot 0

(r) = (24)

SILR( )y
Sp(r', 0y

' U DL
- | dt | dr’ [ dr”
fo f r f " PO KB O

X Sp(r' tp(r",t") + R(0,t;r). (25)

&’p(rrvt,):|
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(Syp(r, OILR(, ;1)) = (Sp(r, OILR(L,t; 1)y 78t — 1),
(323

<5l'p(r!0)5t'p(r,!O)U(tlit)il—ﬁ(r)»t’
=~ (ap(r,0)8p(r, OU(L,DILp(r) 7ot~ ). (32b)

Using the approximations, the first term on the right hand
side of Eq.(31) reduces to

t KILR(t',t;1 )y
d 7 d b ’ ,1 !

Jooe [ o o e
T [ g KEROED oy
oIy e @9

Since (5p(r,0)8p(r,0)iLp(r));=0, the second term van-
ishes. Thus, one can obtain

Averaging the equation, one can obtain an equation for

p(r,©)=(p(r)). If (---)o is applied to Eq(25), the second and  98p(r,t) _ , ) L )
right hand side vanish, because 5 ~ dr Sp(r',t) ot dp(r',U) +ROLT).
(8p(r,t'))o=0. In addition, assuming that for the initial dis-

third terms in the

tribution

(X)o = (Xno, (26)

whereX is an arbitrary function of the phase space, one can

show (R(0,t;r)),=0. Thus,
=(a/ at){p(r ,t))o, ONe can obtain

considering {dp(r ,t)/ dt)g

t
ﬁ%hﬂzfdvfdwmamwmﬂﬁwﬂ- @7
ot 0

Ip(r,1)

(34)
Here dp(r ,t)/ ét is given by Eq.(30).

IV. DISCUSSION

In the present study, the TDDFM has been derived using
the Kawasaki-Gunton operator. The derivation shows that the
TDDFM is applicable when the distribution in the phase
space approaches fast that in the local equilibrium. The local
equilibrium average is expressed by E#j7). It was an as-

If the Markovian approxima‘tion is app“ed to the averagedsumption when the TDDFM V.Va.S.derived for Brownian fluids
equation, one can obtain the TDDFM equation. In a similal14,18-2Q. The present derivation does not have any ap-

way to Eq.(5), the approximation is given bj24]
M(t,t";r,r’") = (Rt r)RE ) rot—t').  (28)

Using PyiLp(r)=0, one has
kT
(Rt,t)RE ")) =V -V’Fp(r,t)ﬁ(r -r'). (29

The substitution of Eq928) and (29) into Eq. (27) yields
ap(r,t) IBF[p(r,1)]
Sp(r,t)

30
p ] (30
whereD=kgT7/(2m). This is the equation of the TDDFM.

=DV -[p(r,t)V

In addition, one also obtains an equation for fluctuation

Sp(r,t). From Egs.(25) and(27), one gets
9 't t iILR(t',t;r))
ap(r,h) _ f av dr,5< (6

ot 0 &p(r', 0y
t
—J dt’fdr’
0

SHU( DL p(r )Yy
X &up(r’ t)p(r”,t") + R(0,t;r).

dr” ~ Y
Xp(r', 00 Xp(r",0))r
Two Markovian approximations are assunj@d],

Sup(r',t')

(31)

proximations when Eq(17) is defined. The present main
approximation is the Markovian approximation E(®8).
The approximation is valid if the relaxation of
(R(t',t";r)R(t’ ,t;r")); is faster than the average density
field p(r ,t)=(p(r));. This correlation function vanishes if the
distribution is not in perfect equilibrium but in local equilib-
rium. This shows that the approximation of the TDDFM is
valid if the distribution approaches fast that in the local equi-
librium. The projection operator method provides the physi-
cal interpretation of the approximation.

In addition to the fast approach to the local equilibrium
distribution, the TDDFM requires that the initial distribution
also should be in local equilibrium. One can find the condi-
Sgon from Eq. (26). This condition was not discussed for

rownian fluids.

The Kawasaki-Gunton operator method has also provided
an equation of fluctuations as well as the TDDFM. It in-
cludes nonlocal effects, where the calculation of a value at
the positionr needs a value af’. Equation(34) allows one
to calculate the time evolution of the dispersion
(8p(r,t)dp(r’,t)), which plays an important role in solvation
dynamics. Some experiments on solvation dynamics have
shown that the spectral bandwidths have relaxed more
slowly than the peak shiffs835,36]. If the spectral bandwidth
is given by the dispersion, the time evolution equation of the

031203-4



MICROSCOPIC DERIVATION OF TIME-DEPENDENT. PHYSICAL REVIEW E 71, 031203(2005

dispersion is useful in studying the experimental results. a random force. This is because the functional derivative of
In the present derivation, the TDDFM does not have ranthe free energy defined by the DFT can have discontinuities

dom force when the free energy functional agrees with thaht the glass transition point. If it has discontinuities, one

in the DFT. This is because the denSity field is defined bycannot calculate EqBO) ThUS, one needs different equa-

p(r,H)=(p(r)).. Archer and Rauscher have shown that theyjong describing the time development of the density field to
random force depends on the definition of the density fiel tudy the glass transition.

[20]. The present results show that the free energy functiona Some authors have studied other definitions of a density

I(far:i Ii%t;?r\;n;lizrahaeii\;gng Ogt:ggfiﬁgljgiip(;’g{nggfn field to obtain the random force. Diving a system into cells,
force. The equation howe\cjer has a differegnt free er'(:Jn;nl}/lunakata has defined a density field by the average over the
' : : cell [24]. Archer and Rauscher have defined a density field

functional from that in the DFT. This is consistent with the X ) o=
discussion of Marconi and Tarazofit4, 19. by the average over a time perif20]. Such definitions pro-

One cannot apply the TDDFM to the glass transition with-\{ide eqqations of a density field including a free energy func-
out a random force. Studies of the glass transition require §onal with random force. One, however, cannot generally
random force because the system is trapped at a local minprove that the free energy functional is the same as that in the
mum. However, one cannot employ E80) even if one has DFT.
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