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Time-dependent density functional methodssTDDFMd are studied from the microscopic viewpoint using
projection operator methods in classical liquids. A density field is defined without averaging, so that a time
evolution equation of the density field is derived with a random force. The derived equation includes a free
energy functional, which is different from that defined in the TDDFM. The projection operator method pro-
vides the exact expression of the free energy functional. Another definition of the density field by an average
leads to the equation of the TDDFM. In addition, an equation describing fluctuations is also derived.
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I. INTRODUCTION

The time-dependent density functional methodsTDDFMd
is successful in studies on dynamical properties of classical
liquids f1–13g. The method was early applied to solvation
dynamicsf1–3g. The solvation dynamics in mixtures, in par-
ticular, has shown agreement between the TDDFM and
molecular dynamics simulationsf4,10g. In addition, the
TDDFM has reproduced values of viscosity obtained by mo-
lecular dynamics simulationsf6g. It can also provide the dy-
namic structure factorf5g and self-diffusion constantf6g.
Some authors have extended the method to supercooled liq-
uids f8,9g and molecular liquidsf11–13g.

In addition, recently, the TDDFM has been applied to
Brownian fluids such as colloidal systemsf14–20g. The
TDDFM for the system was compared with numerical simu-
lations of Brownian dynamics. Marconi and Tarazona have
shown excellent agreement in a two-dimensional rod system
f14g. In three-dimensional systems, Dzubiella and Likos
have also found agreement using a Gaussian interaction fluid
f17g.

No-one, however, to our knowledge has derived the
TDDFM from the Liouville equation using a microscopic
Hamiltonianf10,21g. Some authors have discussed the deri-
vation in Brownian fluidsf14,18–20g. These discussions
started from Langevin equations of interacting particles.
Since the TDDFM is succesful for atomic liquids, one should
study the microscopic base in Hamiltonian mechanics. The
difference between the Hamiltonian system and Brownian
dynamics is given by momentum relaxation.

When the TDDFM is derived, the derived equation should
have the same free energy functional as that in the density
functional theorysDFTd f10,22g. In the basic equation of the
TDDFM, the functional derivative of the free energy pro-
vides the time evolution of a density field. Then, the free
energy functional is defined by the DFT. This is because the
TDDFM is the dynamical extension of the DFT.

Some authors have derived the DFT free energy func-
tional in the TDDFM for Brownian fluids, using an assump-
tion f14,18–20g. The assumption is that the two-particle cor-

relation in a nonequilibrium fluid is the same as that in an
equilibrium fluid with the corresponding desnity field. This is
the local equilibrium assumption. The physical interpretation
of the assumption is, however, not clear.

On the other hand, one obtains the free energy functional
with different definitions from that of the DFT, if the nonlin-
ear Langevin equation theory is applied to atomic fluids
f21,23,24g. The nonlinear Langevin equation theory provides
similar equations to the TDDFM, which describe the time
evolution of a density field. In addition, the equations include
the “free energy functional,” though its definition is different
from that in the DFT. From the difference of the definition,
one finds that the equations are different from that of the
TDDFM.

One can expect that the Kawasaki-Gunton operator
methodf25–27g provides the same free energy functional as
that of the DFT. The Kawasaki-Gunton operator was origi-
nally introduced by Kawasaki and Gunton to study the non-
linear shear viscosityf25g. Some authors have employed it to
derive transport equations exactlyf26,27g. The Kawasaki-
Gunton operator method is formulated using the relevant dis-
tribution obtained by the generalization of the Gibbs en-
semblef27g. On the other hand, in the nonlinear Langevin
equation theory, one employs a distribution includingd func-
tions, which is similar to that of the microcanonical en-
semble. Thus, Kawasaki has called the two operator methods
canonical and microcanonical descriptionsf26g. One can ex-
pect that the canonical description leads to the free energy
functional of the DFT.

Discussions also arise as to random force in the TDDFM
with the microscopic derivation. Some authors have em-
ployed the TDDFM with a random force to study super-
cooled liquids and glassf8,9g. One can obtain a random
force by nonlinear Langevin equation theoryf23,24g. Mar-
coni and Tarazonaf14,19g, however, have derived the
TDDFM without a random force. They insisted that the
TDDFM should not have a random force. In the Brownian
fluid system, Archer and Rauscher have shown that the prob-
lem depends on the definition of the density fieldf20g.

An additional problem is caused by the explicit expres-
sions of the free energy functional defined in the nonlinear
Langevin equation theory. The definition is different from
that in the density functional theory and the TDDFM. Fru-
sawa and Hayakawaf28g have obtained the explicit expres-*Electronic address: yosi3scp@mbox.nc.kyushu-u.ac.jp
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sion on a discrete lattice. Woo and Songf29g, however, have
shown that the method causes difficulties for hard-sphere liq-
uids. Thus, explicit expressions valid for all interactions be-
tween liquid particles have not yet been obtained.

The purpose of the present study is to derive the TDDFM
from the Liouville equation for atomic liquids using projec-
tion operators. In addition, the relation of the free energy
functional to the derivation is established. Projection opera-
tor methods provide a systematic derivation and clear inter-
pretation of the approximation. First, the time evolution of a
density field is studied without coarse graining using the
nonlinear Langevin equation theory. Next, the TDDFM is
derived using the Kawasaki-Gunton operators.

In the present study, the nonlinear Langevin equation
theory is also studied to compare it with the Kawasaki-
Gunton operator method. The nonlinear Langevin equation
theory leads to a random force. Thus, by using the nonlinear
Langevin equation theory, one can establish the role of a
random force in the derivation of the TDDFM. In addition,
the theory provides the free energy functional discussed by
Frusawa and Hayakawaf28g and Woo and Songf29g. For
these reasons, the nonlinear Langevin equation theory will be
discussed in the next section.

II. THE NONLINEAR LANGEVIN EQUATION THEORY

In the present section, a density field is defined without
coarse graining. The time evolution equation of a density
field rsr ,td depends on its definitionf20g. If one has

r̂sr ,td ; o
i=1

N

d„r − r istd…, s1d

the first definition is given byrsr ,td= r̂sr ,td. Here, r istd is
the position of particlei.

The nonlinear Langevin equation theoryf21,30,31g is ap-
plied to the first definitionrsr ,td= r̂sr ,td. In the nonlinear
Langevin equation theory, slow variables play an essential
role. The time changes of the slow variables are projected on
the nonlinear functional space of the variables. The projec-
tion provides closed equations for the variables when the
memory functions are obtained. If time changes of the cho-
sen variables are slow enough, one can employ the Markov-
ian approximation. The present slow variable isr̂sr ,td.

To apply the nonlinear Langevin equation theory, the pro-
jection operator is defined by

PX̂; kX̂; r̂sr dl ;
kX̂d„r̂sr d − rsr ,td…l
kd„r̂sr d − rsr ,td…l

. s2d

Here, X̂ is a function of the phase space witht=0, r̂sr d
= r̂sr ,0d, and k¯d(r̂sr d−rsr ,td)l denotes the average re-
stricted tor̂sr d=rsr ,td over the phase space witht=0.

The usual procedure of the projection operator method
f32g provides a generalized nonlinear Langevin equation.
The equation is given by

]rsr ,td
]t

=E
0

t

dt8kiLRsr ,t − t8d;rsr ,t8dl + Rsr ,td, s3d

where

Rsr ,td = etQiLQiLrsr ,0d. s4d

Here, iL is the Liouville operator andQ;1−P.
The Markovian approximation leads one to the nonlinear

Langevin equation. The present Markovian approximation is
given by f24g

kiLRsr ,t − t8d;rsr ,t8dl < kiLRsr ,0d;rsr ,t8dltdst − t8d.

s5d

The substitution of Eq.s5d into Eq. s3d yields

]rsr ,td
]t

=
t

2
kiLRsr ,0d;rsr ,t8dl + Rsr ,td. s6d

The nonlinear Langevin equation is rewritten in a form
including the free energy functional. The first term in the
right hand side of Eq.s6d reduces to

kiLRsr ,0d;rsr ,tdl =E dr 8Msr ,r 8,td
d„− bF8frsr ,tdg…

drsr 8,td

+E dr 8
dMsr ,r 8,td

drsr 8,td
, s7d

where Msr ,r 8 ,td=kfiLrsr dgfiLrsr 8dg ;rsr ,tdl. The free en-
ergy functional

− bF8frsr dg ; lnkd„r̂sr d − rsr d…l s8d

is different from that of the DFT in its definition. This is the
one discussed by Frusawa and Hayakawaf28g and Woo and
Songf29g. Since

Msr ,r 8,td = = ·FkBTrsr ,td
m

=8dsr − r 8dG , s9d

where m is the mass of the particle, one can find that the
second term in Eq.s7d vanishes and then

kiLRsr ,0d;rsr ,tdl = = ·FkBTrsr ,td
m

=
dbF8frsr ,tdg

drsr ,td G .

s10d

The substitution of Eq.s10d into Eq. s6d yields

]rsr ,td
]t

= D = ·Frsr ,td =
dbF8frsr ,tdg

drsr ,td G + Rsr ,td,

s11d

whereD=kBTt / s2md.
On the other hand, one can obtain a different expression

for the nonlinear Langevin equation. Calculating the first
term in the right hand side of Eq.s6d directly, one has
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iLRsr ,0d = − = ·Fo
i=1

N

vi = ·vidsr − r id + o
i=1

N

v̇idsr − r idG ,

s12d

wherevi is the velocity of particlei. In addition,v̇i = iLvi is
given by the equation of motionmv̇i =−S jÞ1=ivsr i ,r jd when
one considers only a two-particle interactionvsr i ,r jd. Aver-
aging Eq.s12d, one can obtain

kiLRsr ,0d;rsr ,tdl

= −
1

m
= ·F− kBT = rsr ,td − rsr ,td =

3E dr 8vsr ,r 8drsr 8,td + rsr ,td = vsr ,r dG . s13d

Then one has

]rsr ,td
]t

=
tkBT

2m
¹2rsr ,td

+
t

2m
= ·Frsr ,td =E dr 8vsr ,r 8drsr 8,tdG

−
t

2m
= · frsr ,td = vsr ,r dg + Rsr ,td, s14d

which is equivalent to the equation derived by Deanf33g and
Frusawa and Hayakawaf34g for the Langevin process.

The two expressions provide an exact form of the first
free energy functionalF8frsr dg. Comparing Eqs.s10d and
s13d, one has

bF8frsr dg =E rsr dln rsr ddr

+
b

2
E dr E dr 8vsr ,r 8drsr drsr 8d

− bE dr vsr ,r drsr d + AE rsr ddr + B,

s15d

becauseF8frg is independent ofr if r is independent ofr .
This agrees with the result derived by Frusawa and Hay-
akawaf28g. In contrast to their derivation, it is valid for all
interactions because no discrete lattices are employed in the
present derivation. Equations15d, however, has arbitrary
constantsA andB.

III. THE KAWASAKI AND GUNTON PROJECTION
OPERATOR

The second projection operator is introduced because the
first projection operator does not provide the TDDFM. The
second projection operator has been developed by Kawasaki
and Guntonf25,26g. The projection operator is applied to the
second definitionrsr ,td=kr̂sr dlt where the average is given
by a nonequilibrium distribution.

The second projection operator is defined byf25,26g

PtX̂ ; kX̂llt +E dr
dkX̂llt

dkr̂sr dllt

dtrsr ,0d. s16d

The expression in bracketsk¯llt is given by

kX̂llt ;
kX̂expf− bE dr r̂sr dcsr dgl

kexpf− bE dr r̂sr dcsr dgl
, s17d

where the virtual external fieldcsr d is determined by

kr̂sr dllt = kr̂sr dlt. s18d

Here, k¯lt is the average using a nonequilibrium distribu-
tion, and

kr̂sr dlt = kr̂sr ,tdl0. s19d

In addition,

dkX̂llt

dkr̂sr dllt

=E dr 8kX̂dtr̂sr 8,0dlltH dcsr 8d
dkr̂sr dllt

J
and dtrsr ,t8d= r̂sr ,t8d−kr̂sr 8dllt. The second projection op-
erator depends on time in contrast to the first projection op-
erator given by Eq.s2d.

The second projection operator provides a exact equation
for r̂sr ,td. The time development ofr̂sr ,td is given by

] r̂sr ,td
]t

=E
0

t

dt8et8iLPt8iLQt8Ust8,tdiL r̂sr d

+E
0

t

dt8et8iLQ̇t8Ust8,tdiL r̂sr d + Q0Us0,tdiL r̂sr d,

s20d

whereQt=1−Pt , Ust ,t8d is defined by

]

]t
Ust8,td = Ust8,tdiLQt, s21d

with Ust ,td=1, and Rst8 ,t ; r d;Qt8Ust8 ,tdiL r̂sr d. Equation
s20d is rewritten in the form

] r̂sr ,td
]t

=E
0

t

dt8HkiLRst8,t;r dllt8

+E dr 8
dkiLRst8,t;r dllt8

dkr̂sr 8,0dllt8
dt8rsr ,t8dJ

+E
0

t

dt8et8iLQ̇t8Ust8,tdiL r̂sr d + Rs0,t;r d.

s22d

The first term on the right hand side of Eq.s22d reduces to

kiLRst8,t;r dllt8 =E dr 8Mst,t8;r ,r 8dbcsr d, s23d

whereMst ,t8 ; r ,r 8d=kRst8 ,t8 ; r dRst8 ,t ; r 8dllt8 and f10g
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csr d =
dFfrsr ,tdg
drsr 8,td

. s24d

The second free energy functionalFfrsr dg is exactly the

same as that in the DFT. CalculatingQ̇t8, one has

] r̂sr ,td
]t

=E
0

t

dt8FE dr 8Mst,t8;r ,r 8dbcsr d

+E dr 8
dkîLRst8,t;r dllt8

dkr̂sr 8,0dllt8
dt8rsr 8,t8dG

−E
0

t

dt8E dr 8E dr 9
d2kUst8,tdiL r̂sr dllt8

dkr̂sr 8,0dllt8dkr̂sr 9,0dllt8

3dt8rsr 8,t8dṙsr 9,t8d + Rs0,t;r d. s25d

Averaging the equation, one can obtain an equation for
rsr ,td=kr̂sr dlt. If k¯l0 is applied to Eq.s25d, the second and
third terms in the right hand side vanish, because
kdt8rsr ,t8dl0=0. In addition, assuming that for the initial dis-
tribution

kX̂l0 = kX̂ll0, s26d

whereX̂ is an arbitrary function of the phase space, one can
show kRs0,t ; r dl0=0. Thus, considering k]r̂sr ,td /]tl0

=s] /]tdkr̂sr ,tdl0, one can obtain

]rsr ,td
]t

=E
0

t

dt8E dr 8Mst,t8;r ,r 8dbcsr d. s27d

If the Markovian approximation is applied to the averaged
equation, one can obtain the TDDFM equation. In a similar
way to Eq.s5d, the approximation is given byf24g

Mst,t8;r ,r 8d < kRst,t;r dRst,t;r 8dllttdst − t8d. s28d

Using Pt8iL r̂sr d=0, one has

kRst,t;r dRst,t;r 8dllt = = · =8
kBT

m
rsr ,tddsr − r 8d. s29d

The substitution of Eqs.s28d and s29d into Eq. s27d yields

]rsr ,td
]t

= D = ·Frsr ,td =
dbFfrsr ,tdg

drsr ,td G s30d

whereD=kBTt / s2md. This is the equation of the TDDFM.
In addition, one also obtains an equation for fluctuations

dtrsr ,td. From Eqs.s25d and s27d, one gets

]dtrsr ,td
]t

=E
0

t

dt8E dr 8
dkiLRst8,t;r dllt8

dkr̂sr 8,0dllt8
dt8rsr 8,t8d

−E
0

t

dt8E dr 8E dr 9
d2kUst8,tdiL r̂sr dllt8

dkr̂sr 8,0dllt8dkr̂sr 9,0dllt8

3dt8rsr 8,t8dṙsr 9,t8d + Rs0,t;r d. s31d

Two Markovian approximations are assumedf24g,

kdt8rsr ,0diLRst8,t;r dllt8 < kdtrsr ,0diLRst,t;r dllt8tdst − t8d,

s32ad

kdt8rsr ,0ddt8rsr 8,0dUst8,tdiL r̂sr dllt8

< kdtrsr ,0ddtrsr ,0dUst,tdiL r̂sr dllttdst − t8d. s32bd

Using the approximations, the first term on the right hand
side of Eq.s31d reduces to

E
0

t

dt8E dr 8
dkiLRst8,t;r dllt8

dkr̂sr 8,0dllt8
dt8rsr 8,t8d

=
t

2
E dr 8

dkiLRst,t;r dllt

drsr 8,td
dt8rsr 8,t8d. s33d

Since kdtrsr ,0ddtrsr ,0diL r̂sr dllt =0, the second term van-
ishes. Thus, one can obtain

]dtrsr ,td
]t

=E dr 8F d

drsr 8,td
drsr ,td

]t
Gdt8rsr 8,t8d + Rs0,t;r d.

s34d

Here]rsr ,td /]t is given by Eq.s30d.

IV. DISCUSSION

In the present study, the TDDFM has been derived using
the Kawasaki-Gunton operator. The derivation shows that the
TDDFM is applicable when the distribution in the phase
space approaches fast that in the local equilibrium. The local
equilibrium average is expressed by Eq.s17d. It was an as-
sumption when the TDDFM was derived for Brownian fluids
f14,18–20g. The present derivation does not have any ap-
proximations when Eq.s17d is defined. The present main
approximation is the Markovian approximation Eq.s28d.
The approximation is valid if the relaxation of
kRst8 ,t8 ; r dRst8 ,t ; r 8dllt is faster than the average density
field rsr ,td=kr̂sr dlt. This correlation function vanishes if the
distribution is not in perfect equilibrium but in local equilib-
rium. This shows that the approximation of the TDDFM is
valid if the distribution approaches fast that in the local equi-
librium. The projection operator method provides the physi-
cal interpretation of the approximation.

In addition to the fast approach to the local equilibrium
distribution, the TDDFM requires that the initial distribution
also should be in local equilibrium. One can find the condi-
tion from Eq. s26d. This condition was not discussed for
Brownian fluids.

The Kawasaki-Gunton operator method has also provided
an equation of fluctuations as well as the TDDFM. It in-
cludes nonlocal effects, where the calculation of a value at
the positionr needs a value ofr 8. Equations34d allows one
to calculate the time evolution of the dispersion
kdrsr ,tddrsr 8 ,tdl, which plays an important role in solvation
dynamics. Some experiments on solvation dynamics have
shown that the spectral bandwidths have relaxed more
slowly than the peak shiftsf35,36g. If the spectral bandwidth
is given by the dispersion, the time evolution equation of the
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dispersion is useful in studying the experimental results.
In the present derivation, the TDDFM does not have ran-

dom force when the free energy functional agrees with that
in the DFT. This is because the density field is defined by
rsr ,td=kr̂sr dlt. Archer and Rauscher have shown that the
random force depends on the definition of the density field
f20g. The present results show that the free energy functional
is also relevant to the random force. Ifrsr ,td= r̂sr ,td, one
can obtain an alternative equations11d including a random
force. The equation, however, has a different free energy
functional from that in the DFT. This is consistent with the
discussion of Marconi and Tarazonaf14,19g.

One cannot apply the TDDFM to the glass transition with-
out a random force. Studies of the glass transition require a
random force because the system is trapped at a local mini-
mum. However, one cannot employ Eq.s30d even if one has

a random force. This is because the functional derivative of
the free energy defined by the DFT can have discontinuities
at the glass transition point. If it has discontinuities, one
cannot calculate Eq.s30d. Thus, one needs different equa-
tions describing the time development of the density field to
study the glass transition.

Some authors have studied other definitions of a density
field to obtain the random force. Diving a system into cells,
Munakata has defined a density field by the average over the
cell f24g. Archer and Rauscher have defined a density field
by the average over a time periodf20g. Such definitions pro-
vide equations of a density field including a free energy func-
tional with random force. One, however, cannot generally
prove that the free energy functional is the same as that in the
DFT.
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